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The high-frequency component of the random solution of a model problem is 
shown to be statistically orthogonal to the Gaussian component. This is shown 
to be a consequence of the existence of an equilibrium range. It is concluded that 
random flow fields can be viewed as being approximately Gaussian only in a very 
special sense and, in particular, that Wiener-Hermite expansions can provide 
a useful description only of large-scale hydrodynamical phenomena. 

1. Introduction 
It is a well-known experimental fact that the velocity distribution of a homo- 

geneous turbulent flow appears to be nearly Gaussian, but it is also well known 
that approximation methods which attempted to exploit this fact have ended in 
failure. This situation is in sharp contrast to the one which prevails in the 
kinetic theory of gases, where Gram-Charlier expansions have proved quite 
useful (see, for example, Chorin 1972). It is the purpose of this paper to provide 
a pithy resolution of this apparent paradox by showing that, contrary to appear- 
ances, random flow is not in fact nearly Gaussian, except in a very special sense 
which will be made explicit. 

The problem at hand can be formulated as follows. Consider the differential 
equation 

where t is the time and Q is a nonlinear differential operator, with (1) representing 
either a model equation or the Navier-Stokes equations themselves. Let vo be a 
homogeneous random field, i.e. a random function of position x whose statistical 
properties are independent of 5. Furthermore, let vo be Gaussian. (For precise 
definitions and analysis, see Gelfand & Vilenkin 1964, p. 237; Doob 1953, p. 71.) 
Let each realization of vo be taken as an initial state for (1) and allowed to evolve 
as the equation dictates. At a time t > 0 we obtain a random field vt which is 
homogeneous if the coefficients of Q are independent of x, and whose statistical 
properties we should like to analyse. It is known that, even though vo is Gaussian, 
vt is not. One can readily show that if the field remains Gaussian no energy trans- 
fer between modes can occur; it is, however, known that in solutions of the 
Navier-Stokes equations such transfer does occur. It has also been shown by 
Hopf (1952) that a random field containing an inertial range of frequencies, 
which is generally believed to exist for the problems at hand, is in an essential 
way distinct from a Gaussian field. Our purpose is to show the drastic extent of 
this distinction. 

vt = Qv, (1) 



22 A .  J .  Chorin 

I n  the next section we present some of the tools we shall require, in particular 
the moving average and Wiener-Hermite representations of random fields. In  
5 3 we discuss the model equation 

vt + vv, = 0 

V t  + vvu, - R-~v,, = 0, 
and the Burgers equation 

where R is a large parameter, and show that the first term, i.e., the Gaussian 
term, in the Wiener-Hermite expansion of their solution, is orthogonal to the 
high-frequency component of that solution. I n  $4 we explain these results in 
terms of turbulence theory, and in particular contrast the notation of an equili- 
brium range with ideas known t o  be valid in classical statistical mechanics of a 
large but finite system of particles. I n  $ 5  we indicate how to generalize these 
results to the Navier-Stokes equations and how to use them to practical advan- 
tage. 

2. Moving average and Wiener-Hermite representations of random 
fields 

Let $(x) be a random field and assume that it satisfies the following conditions. 
(i) It has zero mean, i.e. 

E[#(x)] = 0 for all x, 

where E[q] describes the expected value of the random variable 7. 
(ii) It has locally finite energy 

E[1dWl21 < 00. 

B(4 = m44 $@ + r)l 

(iii) It is homogeneous in the wide sense, i.e. the expression 

is a function of r alone, 
(iv) B(r) is continuous a t  r = 0. 
Under these conditions, $(x) has a spectral representation 

= I exp (W P(dk) ,  

~ ( r )  = J exp (ikr) d ~ ( k ) ,  

( 4) 

wherepis arandom measure (Gelfand &Vilenkin 1964, p. 268; Doob 1953, p. 527). 
Furthermore, 

where dP(k)  = E [ l , ~ ( d k ) 1 ~ ]  and P(k)  is the spectral distribution function of 
6. The representations (4) and ( 5 )  are well known and commonly used in the 
theory of turbulence (see, for example, Batchelor 1960, p. 28). 

A random field is said to have orthogonal increments if, whenever A and B 
are disjoint measurable sets on the x axis and 

(5) 

n 1 
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Assume that Q has the following additional property. 
(v) F is absolutely continuous, i.e. there exists an integrable function F' 
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such that 
dF(k)  = F ' ( k ) d k ;  

in other words, the energy density associated with q5 in wavenumber space is 
finite. The relevance of this assumption to hydrodynamics is discussed, for ex- 
ample, in Batchelor (1960, pp. 25, 85). 

We have the following theorem. 
If, and only if, F ( k )  is absolutely continuous, q5 is a process of moving averages, 

i.e. there exists a fixed functionf*(x) and a field ~ ( x )  with orthogonal increments 
such that 

Q(4 = jf*@ - 8) dy(s), (6) 

in the root-mean-square sense, where dy is normalized by E[ldq(s)12] = ds. 
The proof of the theorem is given, for example, in Doob (1953, p. 532). It is 

based on the remark that, if F is absolutely continuous, (4) can be written as 

QtX)  = JexP ( i k x ) f ( k )  dy"(k) ,  

wheref(k) = (P'(k))* and 7" has orthogonal increments and is normalized by 

E[ldr*(k)12] = dk.  

The Fourier transform of 7" is 7, and the desired result follows by application of 
ParseVal's identity. The theorem states that Q is a linear combination, with 
random coefficients, of functions obtained from a fixed function by translation. 
Furthermore, sincef = F'i ,  we have 

so that in particular -qQl21 = J lf12dk. (7) 

Thus, the spectrum of q5 is contained in each one of the elements whose sum makes 

In  the particular case of a Gaussian field 4, 7 and 4" are Gaussian fields with 
orthogonal (and thus independent) increments. However, the field 7 in (6) is 
arbitrary to a very large extent; fields which are neither Gaussian nor close to 
being Gaussian have representations of the form (6). 

Below we shall be interested not only in representing given random fields, but 
also in studying their evolution in time subject to a given differential equation. 
In  general, as q5 evolves, so do bothf" and 7. It would be convenient to  have a 
representation of q5 in terms of an unchanging random field, and then have to deal 
solely with the variation in time of sure (non-random) functions such as f *. Such 
arepresentation is given by the Wiener-Hermite expansion (Wiener 1958, p. 16; 
Cameron & Martin 1947; Meecham & Jeng 1968). Let [(x) be a Gaussian process 
with orthogonal increments, normalized by E[ld<I2] = dx;  6 is uniquely deter- 
mined up to an immaterial constant in the normalization condition. Let 

UP q5. 

~,(dt-(s,), d5(s,) ,  * * 7 d!$s,)) = Hn(d6) 
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be the Hermite polynomial functional of < (further defined below); let $(x) be a 
random field with the following additional property: for each x, $(x) is a functional 
off which is square-integrable with respect to the Wiener measure; then we have 

m 

#(x) = C ~...~K,(x-sl,x-s2 ,..., x-~,)H,(d5). 
.n=O 

The kernels K ,  are square-integrable sure functions, and the randomness is 
expressed by the presence of the orthogonal functionals H,(d[). One could hope 
to substitute the expansion into a differential equation (l), and use the ortho- 
gonality of the H,(d[) to obtain relations between the kernels K,. This is in fact 
the basis of the method of Meecham & Jeng (1968). 

Note that, if # is Gaussian, the representations ( 6 )  and (8) coincide; ~ ( s )  is 
Gaussian, while (8) contains a single, Gaussian term. The terms n = 2, ..., re- 
present the non-Gaussian part of #. 

3. Wiener-Hermite expansion of solutions of model problems 
Consider first the model problem (2): 

vt+vvz = 0, v(x, 0) given. 

Some of its relevant properties are the following: except for very exceptional 
cases, shockswilldevelopinw(x,t)inafinite timehowever smooth thedatamay be; 
the number of shocks will ultimately decrease through overtaking and absorp- 
tion; if w(x, 0) has compact support, one ends up with a single shock. The shocks 
are responsible for the decay of the solutions. The number of shocks per unit 
length of the x axis is finite. Ci, the intensity of the shock at  xi, depends on the 
data between x+ and x-, where x+ and x- are the intersections with the x axis of 
the characteristics entering the shock from the right and left. The existence 
of these characteristics is guaranteed by the entropy condition, which allows 
only compression shocks (see Glimm & Lax 1970). 

Let 6(k) be the Fourier transform of v(x), whenever it is defined. An ‘energy 
cascade’ occurs in the solution of (2), i.e. ‘modes’ 6(k)  with ever increasing k 
are excited. This cascade is occasioned by the appearance of shocks. Since the 
Pourier transform of a shock of intensity Ci at xi is Cie-xikk-l, the energy density 
in the high wavenumber range is O ( k 2 ) .  

Let q(x) be the function defined by 

(-a+x)/a, --a < x < 0, 
q(z) = (.--a)/., 0 < x < a, 

[ O >  -a < 1x1. 
q(x) is discontinuous at  x = 0 and has a support of length 2a. Let v(x, t )  be the 
solution of (2). We have for all t 

v(x, t )  = U ( X ,  t )  +w(x, t ) ,  (9) 

w(x,t) = x-cjq(.-xj), ( 10) 

where u(x, t )  is continuous and w(x, t )  has the form 
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where the xj are the locations of the shocks of v and the Cj are their intensities. 
For each x, the sum in (10) contains only a finite number of terms. 

Consider the initial data as being a single realization of a Gaussian random 

field vo(x) : vO(x) = Jf*(x- s) d[(s) ,  

Each realization of wt can be written in the form (10)) and thus 

dE(s) Gaussian. 

vt = wt+wt, 

where each realization of ut is continuous. We call wt the discontinuous part of 
vt. wt and wt are both homogeneous random fields satisfying conditions (i)-(v) 
above. We have the following theorem. 

The Gaussian term in the Wiener-Hermite expansion of wt is zero, i.e., 

K,(s) = E[wt(0)df(s) ]  = 0. (11)  

Note that the theorem is clearly suggested by the contrast between the repre- 
sentation (6) applied to a Gaussian field, which describes the field as an infinite 
sum of identical objects, and the fact that wt contains only a finite sum of identical 
objects in each realization. We shall prove the theorem by a method both con- 
crete and laborious, with the purpose of not only proving the result, but also 
exhibiting in detail what it is that goes awry. 

We begin by expressing the Wiener-Hermite expansions as a limit of Hermite 
functions of a discrete set of linear functions of [ (Imamura, Meecham & Siege1 
1965; Cameron & Martin 1947). Consider the interval I = ($1 - X  < x < x}; 
let N be an integer; divide I into N + 1 subintervals 

I{ = {XI -X+( i -1 )h  < x < -X+ih} ,  

where h = 2 X / N .  Let $i be the function 

1, X E I i ,  

+ i = (  0, %$Ii. 

$i is the characteristic function of Ii. Let 

ti = J+idE, 

where E is a Gaussian field with orthogonal increments; the integrals & exist as 
generalized Stieltjes integrals for almost all 6,  and ti is a Gaussian random vari- 
able with zero mean and variance 

E"?] = h. 

H t ( 5 )  = CK,(x-si)ti[i, 

Consider the family of functionals off  defined by 

H,h(E) = 1) 
i 

= c c K A x  - Si, x - 83) " i t j  - W$jl, 
C j  

etc., where the Ki are square-integrable functions of their arguments, Sij is the 
Kronecker delta and E[H$ H:] = JPg.  The functionals Hk are our coarse-grained 
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Wiener-Hermite polynomials; h is the grain size and we define a coarse-grained 
Wiener-Hermite expansion to be the series 

C unH2( t ) ,  a, constants. 
n 

The Cameron-Martin (1947) theorem guarantees that as h --f 0 and then X + co 
the limit of the series exists provided that 

ZJ I ~ n ( s 1 ,  ..-,sn)12ds1, .*. ,dsn < a; 
It 

such series span the space of random fields which are square-integrable with 
respect t o  the Wiener measure. 

We now turn to the field wt. By the theorem of the last section, it has a represen- 
tation of the form 

We have to prove that 7 has a finite number of jumps per unit length. It is simpler 
to write 

where 1.i.m. denotes a limit in the mean, si belongs to the support of $i, and 
vi is the sum of the Cj corresponding to shocks whose locations fall in the support 
of $i. Equation (13) is valid without further ado. The question now is whether 
{ 13) can be expressed as a limit of an expression such as (12). Let the variables 
yi be functions of the variables ti; 

Wt = If*(. - 8) dq(s). 

wt = 1.i.m. xCf*(x - si)  T { ,  (13) 
h+O, x+o3 

T i  = G(t1, * * , E N ) .  (14) 

(All the t4 must appear because we have no reason to believe that the qi are 
independent. ) 

Let us assume for a moment that 
Bi = dtiL (15) 

i.e. qi depends on a single variable ti. It will be obvious that the argument below 
generalizes to the general case (14), but the assumption (15) reduces the amount 
of writing necessary. 

Consider the unit interval [0,1]. The number of shocks in this interval is finite 
for each realization of wt. Thus, for every 0 < el < 1 there exists an integer 
1M = M(el)  such that the probability of finding more than M shocks in [ O ,  l] is 
less than el. Therefore, for every 0 < e2 < 1, however small, there exists an N 
such that the probability of finding no shocks in the support of any one +j is 
greater than 1 - e2: simply pick M = M(&,) and h = 2X/N < &M, If there are 
no shocks in the support of $ j ,  ~j = I $i dq = 0. Thus the probability of having 
q j = ~ i s i - s , w i t h O < ~ < ~ 2 .  

We now construct a random variable qj having this property as a function of gj .  
Divide the interval [0,1] into two disjoint sets S,  and X,, with S,  of length 1 - 6 and 
8, of length 6 .  For the sake of convenience, introduce the notation 

eh(z) = (2nh)+exp ( -xZ/.~h),  
r 
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where S,(x) is the intersection of [ - co, x] with the set {zleh(x) ~ 8 ~ ) .  Assume for a 
moment that except at  x = 0 the probability distribution function of rj ,  

Q(x) = prob (nj < x), 
is differentiable, and let 

Then we can set ri = gh(&), where 

If Q(x) is not differentiable, g,(x) is given for eh(y) €8, by a more complicated 
formula; the argument below is not modified in an essential manner. 

We have, by definition, 
-w,21 = j g3x)  e h ( 4  dx = h; 

let q(x) be the characteristic function of ec1(S2), i.e. 

We have then 

= hW. 

Thus, the inner product of gh with any bounded function tends to zero faster 
than h* as h + 0;  collecting terms, we see that the leading term in the Wiener- 
Hermite expansion of wt is the limit of N = O(h-l) variables, each with variance 
he, withe -+ 0;  thus it tends to zero as h + 0. Q.E.D. 

Note that we cannot conclude from our argument that the following terms in 
the expansion vanish. However, it  is clear that the number of terms required 
to represent the field may be large, and will increase as the mean separation 
between shocks increases. The high-frequency range is not a small perturbation 
of a Gaussian field. Furthermore, if one expands in Wiener-Hermite polynomials 
not the field itself but its Fourier transform (Meecham & Jeng 1968), the results 
should be decreasingly valid as the frequency k increases. All these phenomena 
have in fact been observed (Crow & Canavan 1970). 

The conclusion applies not only to the solution of (2), but also to the solution 
of Burgers' equation (3). The solution of the latter converges to the solution of 
the former as R -+ co, and thus whenever the former gives rise to a finite number 
of shocks the latter gives rise to a finite number of shear layers, and the theorem 
applies. 

We shall see in the final section that the proof above provides in fact additional 
information; we shall see how t o  use the fact that if the grain size remains finite, 
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i.e. if one refrains from passing to the limit h + 0 in expressions (12) and (13), 
then the expansion of the resulting approximation to (12) in Wiener-Hermite 
polynomials can be expected to be non-trivial. Before explaining further, we need 
some further elaboration of the results of this section. 

4. Equilibrium and Gaussian fields 
The results of the previous section may appear surprising for the following 

reason: the Gaussian component of the flow is orthogonal to the high-frequency 
range, where statistical equilibrium is supposed to be reached (see below); by 
analogy with kinetic theory, one is tempted to equate equilibrium and Gaus- 
sianity; one is faced with an apparent paradox, which we shall now proceed to 
resolve. 

The range of wavenumbers k which contain most of the energy of hydrody- 
namical flow can be viewed as a group, with characteristic velocity ven = (E[v~] )%,  
characteristic length k;:, where ken is a typical wavenumber in the group, and 
characteristic time (kenven)-I. The characteristic time of their decay is ven/ldven/ 
dtl ; these times are experimentally found to be comparable (Batchelor 1960, p. 
l04), and thus conditions are far removed from those prevailing in classical 
equilibrium statistical mechanics. On the other hand, experience suggests that 
at  high frequency k the eddies have a characteristic time small in comparison 
with the overall decay time, and thus may be associated with ‘degrees of free- 
dom’ in approximate statistical ‘equilibrium ’. 

Thus, an attempt has been made in recent years to equate ‘equilibrium ’ and 
Gaussianity. It is known that the inviscid equation (2) formally admits as an 
invariant solution a ‘Gaussian equipartition ensemble ’, i.0. it leaves invariant a 
Gaussian field with orthogonal values. It has been posulated (see, for example, 
Orszag (1967) and the references therein) that this field is the equilibrium field, 
and that any other field irreversibly relaxes towards it. However, one must 
remember that this Gaussian field is only a formal solution of the equations; the 
proof of its invariance contains operations whose validity is not clear, and a 
typical realization contains an infinite number of &functions, to which the 
application of nonlinear differential operators is of doubtful validity. It is readily 
shown that relaxation towards this field does not in fact take place. Consider an 
initial field satisfying condition (ii) above, i.e. having locally finite energy. This 
property is preserved by the equation. On the other hand, the realizations 
of the field with orthogonal values have almost surely an infinite energy (Fried- 
richs & Shapiro et al. 1956, p. V-4). 

Let us re-examine the assumption of statistical equilibrium. Let keg be a wave- 
number in the equilibrium range and let vq be a typical amplitude of 6(k) for k 
in the equilibrium range. Write 

(thus K is large and U is small). The characteristic time of vq is 

(keqvq)-’ = (KU)-’(kenven)-’, 



Gaussian fields and random jlow 29 

and thus the assumption of universal equilibrium reads 

(KU)-' IdveJdtl < kenU:n* (16) 

We now seek solutions of (2) having this property. The Fourier transform of 
vt + vvx = 0 is 

O,+ik/O(k')O(k- k')dk' = 0, 

where $( - k) is the complex conjugate of O(k). We fist note that a random 
field each one of whose realizations is a stationary solution of the differential 
equation is certainly left invariant by the equation and thus represents an 
'equilibrium'. A stationary solution can be obtained by setting a, = 0 in (17) ;  
this leads to the Fourier transform of 

(+)x = 0,  

v =  &C, 
v2 = C2, C = constant, 

where different signs may be assumed on different parts of the x axis. The 
entropy condition allows only compression shocks, and thus only one change of 
sign, from plus to minus, can occur, leading to the field whose realizations have 
the transform 

where C and a are random. This field is clearly not Gaussian. 
Now note that any sum of a smooth flow and a finite number of realizations of 

the field above satisfies condition (16), which defines the equilibrium range. Let 
k be in the equilibrium range, with v(k) the corresponding amplitude, v(k) 
satisfies (17). Perform the change of variables 

6 = 2C eiakk-1, 

V* = v/U, k" = k/K, 

U and K being defined above. Substitution into (17) yields 

( K  U)-lO,* = ik* J v*(k') v*( k - k') dk'. 

limO,(k) = limik/O(k')O(k-k')dk' = 0. 

(18) 

(KU)-lO,* isoforder (KU)- l (dven/d t ) .  Ontheotherhand,theintegralon theright- 
hand side of (18) contains terms of orders ken, wen and ven. By (16) we find 

(19) 
k+m k - m  

This is not unexpected, since the assumption of equilibrium states that the rate 
of change of high-frequency components is small in appropriate units. We now 
show that a sum of a smooth flow (with O(k) = o(k-l) for large k) and of a finite 
number of shocks (two for the sake of economy in notation) satisfies (19). Indeed, 

O(k) = Clexp(ialk) k-l+C,exp(ia,k)k- l+o(k-l) .  let 

Then 

ik /v(k ' )v(k-  k')dk' 

= ik[C, exp (ia, k) + C, exp (ia, k)] 1 (k')-l (k - 

= ikClC2exp (ia,k)lexp [i(al-a,) k'] (k')-l (k-k')-ldk'+o(k-l). 

dk' 

+ikCIC,exp (ia,k)jexp [i(al-a,) k'] k'-l (k- k')-ldk'+o(k-l) 
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Set k = Kk* and k’ = Kk*’, then this expression becomes 

2ik*C,C,exp (ia,k*K)Jexp [i(al-a,) k*’K] (k*’)-l (k*’-k*’) &*I, 

which tends to zero as k,  and thus K ,  tend to CO, because of the presence of the 
oscillating exponential. Furthermore, note that, as the separation a, - u2 of the 
shocks increases, the limit is approached faster. 

This discussion can now be linked with what we know about the solutions of 
(2). Arbitrary data give rise to shocks; thus an equilibrium range is formed. 
The shocks overtake and absorb each other, their number diminishes and their 
separation increases; thus the range of wavenumbers which participate in the 
equilibrium field increases. The flow relaxes to the non-Gaussian equilibrium 
field discussed above. The phenomena of shock formation, energy cascading, 
relaxation to equilibrium and decay are in fact identical. The set of flows having 
these features is a negligible subset of the set of fields having a Wiener-Hermite 
expansion. 

The discussion of the equilibrium. range for (2) applies equally to the inertial 
range of Burgers’ equation (3). The inertial range is the part of the equilibrium 
range where viscous dissipation is negligible. It can be studied by analysing the 
behaviour of the Fourier transform of the solutions of (3) as R --f 00 and 
k -+ 00 in this order. However, the solutions of (3) tend to the solutions of (2) in 
L,, and thus the finite limit can be studied by setting R-l = 0, reverting to the 
previous case. 

A comparison with classical statistical mechanics of a finite but large number 
of particles may be illuminating. The equilibria studied in this section and classi- 
cal statistical equilibria are conceptually totally distinct. The analogy between 
classical statistical mechanics and statistical fluid mechanics is not generally 
valid, since, while in the former the particles which are in motion are fixed in 
nature, in the latter the random velocity field is both the agent and the object 
of the motion; what is being moved by the velocity field is the velocity field 
itself. The theory of the equilibrium range presented in this section isolates those 
features of the flow which are relatively slow to change, and are thus the 
ephemeral particles of the flow. It is to them, and thus to the averaged variables 
qi, that classical ideas, in particular Gaussian expansion methods may apply, 

5. Generalizations and applications 
The preceding discussion is worthwhile only if its conclusions can be general- 

ized to the Navier-Stokes equations and lead to practical conclusions. We shall 
presently show that they do. 

Consider first t he  case of incompressible flow in two space dimensions. We 
have the following facts. 

(a)  The vorticity field g associated with such a flow, if it satisfies the obvious 
vector analogues of conditions (i)-(v) above, has the form 

ax) = JJ d ( x  - s) drl(x), (20) 
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where x and s are two component vectors, 7 is a field with orthogonal increments 
and is a fixed vorticity field. Furthermore, if {(x) is isotropic as well as homo- 
geneous, i&(x) = <o(lxJ), i.e. c0 is a circular vortex. 

( b )  The steady inviscid equations have as a solution any ciroular vortex, as 
well as any infinite straight vortex sheet. A field each one of whose realizations 
is a circular vortex is an ‘equilibrium ’ field; an arbitrary superposition of circular 
vortices satisfies condition (16) (Chorin 1970). 

( c )  It is a long-standing conjecture (Onsager 1949), well supported by numeri- 
cal and experimental evidence, that two-dimensional flow evolves through the 
grad.ual consolidation of vortices. 

( d )  Approximation methods based on Gram-Charlier or Wiener-Hermite 
expansions have proved to be failures. 

In  the presence of these facts, one can conjecture that the situation is analo- 
gous to the one previously discussed. Relaxation to equilibrium proceeds through 
the gradual consolidation of vortices, tending to the ‘equilibrium ’ discussed 
above. In  any one realization, the number of vortices present per unit area is 
finite (there is an ambiguity in this statement, due to the difficulty of defining 
precisely an individual vortex other than a point vortex). The flow fails to be 
Gaussian exactly in the manner above. 

One obvious way to put the above discussion t o  practical use is to represent 
the flow field not by means of difference approximations or Fourier coefficients, 
but rather as a sum of a finite number of randomly placed vorticity elements, 
each one of which has a Fourier transform with an inertial range. Such a method 
was successfully developed in Chorin (1973 b).  

A more intriguing approach, presently being tried, can be presented in two 
distinct but equivalent ways. Suppose that the conjecture of this section is valid; 
dr is not Gaussian. Let +ij be functions of support of area h2, where h is the grain 
size; the $ij are the analogues of the $i above. Consider the stochastic integrals 

and the corresponding Gaussian integrals 

where cis a field with Gaussian increments. By the discussion above, and accord- 
ing to the proof of the theorem regarding the Wiener-Hermite expansion of wt, 
the random variables are nearly Gaussian if h is large enough. One can construct 
the coefficients in the expansion, and have a reasonable numerical description 
of the vorticity field. Such descriptions are known to be valid and useful in other 
contexts (Chorin 1973a).  

On the other hand, one may take literally the statement that the equilibrium 
theory identifies the temporary particles of the flow, and expand the vorticity 
density in small cubes in Wiener-Hermite series (or expand its density function 
in Gram-Charlier series), using the methods of kinetic theory (Chorin 1972). 
This is identical in practice to what has been described in the preceding paragraph. 
The requirement that h be not too small is now easily understood : before one can 
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expand a vorticity density in a small cube in a Gaussian series, one needs at least 
a few vortices in that cube. 

The three-dimensional case can be seen to be analogous; the computational 
details will be presented elsewhere. 
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